Identification of ischemic heart disease via machine learning analysis on magnetocardiograms

نویسندگان

  • Tanawut Tantimongcolwat
  • Thanakorn Naenna
  • Chartchalerm Isarankura-Na-Ayudhya
  • Mark J. Embrechts
  • Virapong Prachayasittikul
چکیده

Ischemic heart disease (IHD) is predominantly the leading cause of death worldwide. Early detection of IHD may effectively prevent severity and reduce mortality rate. Recently, magnetocardiography (MCG) has been developed for the detection of heart malfunction. Although MCG is capable of monitoring the abnormal patterns of magnetic field as emitted by physiologically defective heart, data interpretation is time-consuming and requires highly trained professional. Hence, we propose an automatic method for the interpretation of IHD pattern of MCG recordings using machine learning approaches. Two types of machine learning techniques, namely back-propagation neural network (BNN) and direct kernel self-organizing map (DK-SOM), were applied to explore the IHD pattern recorded by MCG. Data sets were obtained by sequential measurement of magnetic field emitted by cardiac muscle of 125 individuals. Data were divided into training set and testing set of 74 cases and 51 cases, respectively. Predictive performance was obtained by both machine learning approaches. The BNN exhibited sensitivity of 89.7%, specificity of 54.5% and accuracy of 74.5%, while the DK-SOM provided relatively higher prediction performance with a sensitivity, specificity and accuracy of 86.2%, 72.7% and 80.4%, respectively. This finding suggests a high potential of applying machine learning approaches for high-throughput detection of IHD from MCG data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving the Performance of Machine Learning Algorithms for Heart Disease Diagnosis by Optimizing Data and Features

Heart is one of the most important members of the body, and heart disease is the major cause of death in the world and Iran. This is why the early/on time diagnosis is one of the significant basics for preventing and reducing deaths of this disease. So far, many studies have been done on heart disease with the aim of prediction, diagnosis, and treatment. However, most of them have been mostly f...

متن کامل

Data mining of magnetocardiograms for prediction of ischemic heart disease

Ischemic Heart Disease (IHD) is a major cause of death. Early and accurate detection of IHD along with rapid diagnosis are important for reducing the mortality rate. Magnetocardiogram (MCG) is a tool for detecting electro-physiological activity of the myocardium. MCG is a fully non-contact method, which avoids the problems of skin-electrode contact in the Electrocardiogram (ECG) method. However...

متن کامل

Diagnosis of Heart Disease Based on Meta Heuristic Algorithms and Clustering Methods

Data analysis in cardiovascular diseases is difficult due to large massive of information. All of features are not impressive in the final results. So it is very important to identify more effective features. In this study, the method of feature selection with binary cuckoo optimization algorithm is implemented to reduce property. According to the results, the most appropriate classification fo...

متن کامل

Intelligent application for Heart disease detection using Hybrid Optimization algorithm

Prediction of heart disease is very important because it is one of the causes of death around the world. Moreover, heart disease prediction in the early stage plays a main role in the treatment and recovery disease and reduces costs of diagnosis disease and side effects it. Machine learning algorithms are able to identify an effective pattern for diagnosis and treatment of the disease and ident...

متن کامل

تعیین نابرابری اجتماعی- اقتصادی در بهره مندی از خدمات سلامت بیماران ایسکمیک قلبی؛ نمونه موردی شهرستان فلاورجان

Introduction: Determination of health inequities and gaps in health status between different socioeconomic groups, particularly in patients with chronic diseases such as heart disease, has always been of public concern for politicians and social sciences researchers. This study was aimed to evaluate the status of socioeconomic inequality in health care utilization in patients with ischemic hear...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computers in biology and medicine

دوره 38 7  شماره 

صفحات  -

تاریخ انتشار 2008